Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Adicionar filtros

Tipo de documento
Intervalo de ano
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.10.03.560628

RESUMO

The severe acute respiratory syndrome coronavirus (SARS-CoV-2) spike (S) protein is essential in mediating membrane fusion of the virus with the target cells. Several reports demonstrated that SARS-CoV-2 S protein fusogenicity is reportedly closely associated with the intrinsic pathogenicity of the virus determined using hamster models. However, the association between S protein fusogenicity and other virological parameters remains elusive. In this study, we investigated the virological parameters of eleven previous variants of concern (VOCs) and variants of interest (VOIs) correlating with S protein fusogenicity. S protein fusogenicity was found to be strongly correlated with S1/S2 cleavage efficiency and plaque size formed by clinical isolates. However, S protein fusogenicity was less associated with pseudoviral infectivity, pseudovirus entry efficiency, and viral replication kinetics. Taken together, our results suggest that S1/S2 cleavage efficiency and plaque size could be potential indicators to predict the intrinsic pathogenicity of newly emerged SARS-CoV-2 variants.


Assuntos
Síndrome Respiratória Aguda Grave
2.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.04.13.536832

RESUMO

Differences in host ACE2 genes may affect the host range of SARS-CoV-2-related coronaviruses (SC2r-CoVs) and further determine the tropism of host ACE2 for the infection receptor. However, the factor(s) responsible for determining the host tropism of SC2r-CoVs, which may in part be determined by the tropism of host ACE2 usage, remains unclear. Here, we use the pseudoviruses with the spike proteins of two Laotian SC2r-CoVs, BANAL-20-236 and BANAL-20-52, and the cells expressing ACE2 proteins of eight different Rhinolophus bat species, and show that these two spikes have different tropisms for Rhinolophus bat ACE2. Through structural analysis and cell culture experiments, we demonstrate that this tropism is determined by residue 493 of the spike and residues 31 and 35 of ACE2. Our results suggest that SC2r-CoVs exhibit differential ACE2 tropism, which may be driven by adaptation to different Rhinolophus bat ACE2 proteins.

3.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.12.28.21268481

RESUMO

Background The immune profile against SARS-CoV-2 has dramatically diversified due to a complex combination of exposure to vaccines and infection by various lineages/variants, likely generating a heterogeneity in protective immunity in a given population. To further complicate this, the Omicron variant, with numerous spike mutations, has emerged. These circumstances have created the need to assess the potential of immune evasion by the Omicron in individuals with various immune histories. Methods The neutralization susceptibility of the variants including the Omicron and their ancestor was comparably assessed using a panel of plasma/serum derived from individuals with divergent immune histories. Blood samples were collected from either mRNA vaccinees or from those who suffered from breakthrough infections by the Alpha/Delta with multiple time intervals following vaccination. Findings The Omicron was highly resistant to neutralization in fully vaccinated individuals without a history of breakthrough infections. In contrast, robust cross-neutralization against the Omicron were induced in vaccinees that experienced breakthrough infections. The time interval between vaccination and infection, rather than the variant types of infection, was significantly correlated with the magnitude and potency of Omicron-neutralizing antibodies. Conclusions Immune histories with breakthrough infections can overcome the resistance to infection by the Omicron, with the vaccination-infection interval being the key determinant of the magnitude and breadth of neutralization. The diverse exposure history in each individual warrants a tailored and cautious approach to understanding population immunity against the Omicron and future variants. Funding This study was supported by grants from the Japan Agency for Medical Research and Development (AMED).


Assuntos
Dor Irruptiva , Morte , Encefalomielite Aguda Disseminada
4.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.07.28.454085

RESUMO

SARS-CoV-2 Lambda, a new variant of interest, is now spreading in some South American countries; however, its virological features and evolutionary trait remain unknown. Here we reveal that the spike protein of the Lambda variant is more infectious and it is attributed to the T76I and L452Q mutations. The RSYLTPGD246-253N mutation, a unique 7-amino-acid deletion mutation in the N-terminal domain of the Lambda spike protein, is responsible for evasion from neutralizing antibodies. Since the Lambda variant has dominantly spread according to the increasing frequency of the isolates harboring the RSYLTPGD246-253N mutation, our data suggest that the insertion of the RSYLTPGD246-253N mutation is closely associated with the massive infection spread of the Lambda variant in South America.

5.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.06.17.448820

RESUMO

During the current SARS-CoV-2 pandemic, a variety of mutations have been accumulated in the viral genome, and at least five variants of concerns (VOCs) have been considered as the hazardous SARS-CoV-2 variants to the human society. The newly emerging VOC, the B.1.617.2 lineage (delta variant), closely associates with a huge COVID-19 surge in India in Spring 2021. However, its virological property remains unclear. Here, we show that the B.1.617 variants are highly fusogenic and form prominent syncytia. Bioinformatic analyses reveal that the P681R mutation in the spike protein is highly conserved in this lineage. Although the P681R mutation decreases viral infectivity, this mutation confers the neutralizing antibody resistance. Notably, we demonstrate that the P681R mutation facilitates the furin-mediated spike cleavage and enhances and accelerates cell-cell fusion. Our data suggest that the P681R mutation is a hallmark characterizing the virological phenotype of this newest VOC, which may associate with viral pathogenicity. HighlightsO_LIP681R mutation is highly conserved in the B.1.617 lineages C_LIO_LIP681R mutation accelerates and enhances SARS-CoV-2 S-mediated fusion C_LIO_LIPromotion of viral fusion by P681R mutation is augmented by TMPRSS2 C_LI


Assuntos
COVID-19
6.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.04.20.440588

RESUMO

The host transmembrane protein MARCH8 is a RING finger E3 ubiquitin ligase that downregulates various host transmembrane proteins, such as MHC-II. We have recently reported that MARCH8 expression in virus-producing cells impairs viral infectivity by reducing virion incorporation of not only HIV-1 envelope glycoproteins but also vesicular stomatitis virus G-glycoprotein through two different pathways. However, the MARCH8 inhibition spectrum remains largely unknown. Here, we investigate the antiviral spectrum of MARCH8 using HIV-1 pseudotyped with a variety of viral envelope glycoproteins. Pseudotyping experiments revealed that viral envelopes derived from the rhabdovirus, arenavirus, coronavirus, and togavirus (alphavirus) families were sensitive to MARCH8-mediated inhibition. Lysine mutations at the cytoplasmic tails of rabies virus-G, lymphocytic choriomeningitis virus glycoproteins, SARS-CoV and SARS-CoV-2 spike proteins, and Chikungunya virus and Ross River virus E2 proteins conferred resistance to MARCH8. Immunofluorescence showed impaired downregulation of the mutants of these viral envelopes by MARCH8, followed by lysosomal degradation, suggesting that MARCH8-mediated ubiquitination leads to intracellular degradation of these envelopes. Indeed, rabies virus-G and Chikungunya virus E2 proteins proved to be clearly ubiquitinated. We conclude that MARCH8 has inhibitory activity on a variety of viral envelope glycoproteins whose cytoplasmic lysine residues are targeted by this antiviral factor.


Assuntos
Coriomeningite Linfocítica , Síndrome Respiratória Aguda Grave , Estomatite Vesicular
7.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.06.15.151779

RESUMO

The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is steadily mutating during continuous transmission among humans. Such mutations can occur in the spike (S) protein that binds to the angiotensin-converting enzyme-2 (ACE2) receptor and is cleaved by transmembrane protease serine 2 (TMPRSS2). However, whether S mutations affect SARS-CoV-2 infectivity remains unknown. Here, we show that naturally occurring S mutations can reduce or enhance cell entry via ACE2 and TMPRSS2. A SARS-CoV-2 S-pseudotyped lentivirus exhibits substantially lower entry than SARS-CoV S. Among S variants, the D614G mutant shows the highest cell entry, as supported by structural observations. Nevertheless, the D614G mutant remains susceptible to neutralization by antisera against prototypic viruses. Taken together, these data indicate that the D614G mutation enhances viral infectivity while maintaining neutralization susceptibility.


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA